3.60 \(\int \sqrt{c+d x} \cos (a+b x) \sin ^2(a+b x) \, dx\)

Optimal. Leaf size=304 \[ \frac{\sqrt{\frac{\pi }{6}} \sqrt{d} \sin \left (3 a-\frac{3 b c}{d}\right ) \text{FresnelC}\left (\frac{\sqrt{\frac{6}{\pi }} \sqrt{b} \sqrt{c+d x}}{\sqrt{d}}\right )}{12 b^{3/2}}-\frac{\sqrt{\frac{\pi }{2}} \sqrt{d} \sin \left (a-\frac{b c}{d}\right ) \text{FresnelC}\left (\frac{\sqrt{\frac{2}{\pi }} \sqrt{b} \sqrt{c+d x}}{\sqrt{d}}\right )}{4 b^{3/2}}-\frac{\sqrt{\frac{\pi }{2}} \sqrt{d} \cos \left (a-\frac{b c}{d}\right ) S\left (\frac{\sqrt{b} \sqrt{\frac{2}{\pi }} \sqrt{c+d x}}{\sqrt{d}}\right )}{4 b^{3/2}}+\frac{\sqrt{\frac{\pi }{6}} \sqrt{d} \cos \left (3 a-\frac{3 b c}{d}\right ) S\left (\frac{\sqrt{b} \sqrt{\frac{6}{\pi }} \sqrt{c+d x}}{\sqrt{d}}\right )}{12 b^{3/2}}+\frac{\sqrt{c+d x} \sin (a+b x)}{4 b}-\frac{\sqrt{c+d x} \sin (3 a+3 b x)}{12 b} \]

[Out]

-(Sqrt[d]*Sqrt[Pi/2]*Cos[a - (b*c)/d]*FresnelS[(Sqrt[b]*Sqrt[2/Pi]*Sqrt[c + d*x])/Sqrt[d]])/(4*b^(3/2)) + (Sqr
t[d]*Sqrt[Pi/6]*Cos[3*a - (3*b*c)/d]*FresnelS[(Sqrt[b]*Sqrt[6/Pi]*Sqrt[c + d*x])/Sqrt[d]])/(12*b^(3/2)) + (Sqr
t[d]*Sqrt[Pi/6]*FresnelC[(Sqrt[b]*Sqrt[6/Pi]*Sqrt[c + d*x])/Sqrt[d]]*Sin[3*a - (3*b*c)/d])/(12*b^(3/2)) - (Sqr
t[d]*Sqrt[Pi/2]*FresnelC[(Sqrt[b]*Sqrt[2/Pi]*Sqrt[c + d*x])/Sqrt[d]]*Sin[a - (b*c)/d])/(4*b^(3/2)) + (Sqrt[c +
 d*x]*Sin[a + b*x])/(4*b) - (Sqrt[c + d*x]*Sin[3*a + 3*b*x])/(12*b)

________________________________________________________________________________________

Rubi [A]  time = 0.469995, antiderivative size = 304, normalized size of antiderivative = 1., number of steps used = 14, number of rules used = 7, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.292, Rules used = {4406, 3296, 3306, 3305, 3351, 3304, 3352} \[ \frac{\sqrt{\frac{\pi }{6}} \sqrt{d} \sin \left (3 a-\frac{3 b c}{d}\right ) \text{FresnelC}\left (\frac{\sqrt{\frac{6}{\pi }} \sqrt{b} \sqrt{c+d x}}{\sqrt{d}}\right )}{12 b^{3/2}}-\frac{\sqrt{\frac{\pi }{2}} \sqrt{d} \sin \left (a-\frac{b c}{d}\right ) \text{FresnelC}\left (\frac{\sqrt{\frac{2}{\pi }} \sqrt{b} \sqrt{c+d x}}{\sqrt{d}}\right )}{4 b^{3/2}}-\frac{\sqrt{\frac{\pi }{2}} \sqrt{d} \cos \left (a-\frac{b c}{d}\right ) S\left (\frac{\sqrt{b} \sqrt{\frac{2}{\pi }} \sqrt{c+d x}}{\sqrt{d}}\right )}{4 b^{3/2}}+\frac{\sqrt{\frac{\pi }{6}} \sqrt{d} \cos \left (3 a-\frac{3 b c}{d}\right ) S\left (\frac{\sqrt{b} \sqrt{\frac{6}{\pi }} \sqrt{c+d x}}{\sqrt{d}}\right )}{12 b^{3/2}}+\frac{\sqrt{c+d x} \sin (a+b x)}{4 b}-\frac{\sqrt{c+d x} \sin (3 a+3 b x)}{12 b} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[c + d*x]*Cos[a + b*x]*Sin[a + b*x]^2,x]

[Out]

-(Sqrt[d]*Sqrt[Pi/2]*Cos[a - (b*c)/d]*FresnelS[(Sqrt[b]*Sqrt[2/Pi]*Sqrt[c + d*x])/Sqrt[d]])/(4*b^(3/2)) + (Sqr
t[d]*Sqrt[Pi/6]*Cos[3*a - (3*b*c)/d]*FresnelS[(Sqrt[b]*Sqrt[6/Pi]*Sqrt[c + d*x])/Sqrt[d]])/(12*b^(3/2)) + (Sqr
t[d]*Sqrt[Pi/6]*FresnelC[(Sqrt[b]*Sqrt[6/Pi]*Sqrt[c + d*x])/Sqrt[d]]*Sin[3*a - (3*b*c)/d])/(12*b^(3/2)) - (Sqr
t[d]*Sqrt[Pi/2]*FresnelC[(Sqrt[b]*Sqrt[2/Pi]*Sqrt[c + d*x])/Sqrt[d]]*Sin[a - (b*c)/d])/(4*b^(3/2)) + (Sqrt[c +
 d*x]*Sin[a + b*x])/(4*b) - (Sqrt[c + d*x]*Sin[3*a + 3*b*x])/(12*b)

Rule 4406

Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int[E
xpandTrigReduce[(c + d*x)^m, Sin[a + b*x]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0]
&& IGtQ[p, 0]

Rule 3296

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> -Simp[((c + d*x)^m*Cos[e + f*x])/f, x] +
Dist[(d*m)/f, Int[(c + d*x)^(m - 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && GtQ[m, 0]

Rule 3306

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d +
f*x]/Sqrt[c + d*x], x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[{c
, d, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]

Rule 3305

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Sin[(f*x^2)/d], x], x,
Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3351

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelS[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rule 3304

Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Cos[(f*x^2)/d],
x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3352

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelC[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rubi steps

\begin{align*} \int \sqrt{c+d x} \cos (a+b x) \sin ^2(a+b x) \, dx &=\int \left (\frac{1}{4} \sqrt{c+d x} \cos (a+b x)-\frac{1}{4} \sqrt{c+d x} \cos (3 a+3 b x)\right ) \, dx\\ &=\frac{1}{4} \int \sqrt{c+d x} \cos (a+b x) \, dx-\frac{1}{4} \int \sqrt{c+d x} \cos (3 a+3 b x) \, dx\\ &=\frac{\sqrt{c+d x} \sin (a+b x)}{4 b}-\frac{\sqrt{c+d x} \sin (3 a+3 b x)}{12 b}+\frac{d \int \frac{\sin (3 a+3 b x)}{\sqrt{c+d x}} \, dx}{24 b}-\frac{d \int \frac{\sin (a+b x)}{\sqrt{c+d x}} \, dx}{8 b}\\ &=\frac{\sqrt{c+d x} \sin (a+b x)}{4 b}-\frac{\sqrt{c+d x} \sin (3 a+3 b x)}{12 b}+\frac{\left (d \cos \left (3 a-\frac{3 b c}{d}\right )\right ) \int \frac{\sin \left (\frac{3 b c}{d}+3 b x\right )}{\sqrt{c+d x}} \, dx}{24 b}-\frac{\left (d \cos \left (a-\frac{b c}{d}\right )\right ) \int \frac{\sin \left (\frac{b c}{d}+b x\right )}{\sqrt{c+d x}} \, dx}{8 b}+\frac{\left (d \sin \left (3 a-\frac{3 b c}{d}\right )\right ) \int \frac{\cos \left (\frac{3 b c}{d}+3 b x\right )}{\sqrt{c+d x}} \, dx}{24 b}-\frac{\left (d \sin \left (a-\frac{b c}{d}\right )\right ) \int \frac{\cos \left (\frac{b c}{d}+b x\right )}{\sqrt{c+d x}} \, dx}{8 b}\\ &=\frac{\sqrt{c+d x} \sin (a+b x)}{4 b}-\frac{\sqrt{c+d x} \sin (3 a+3 b x)}{12 b}+\frac{\cos \left (3 a-\frac{3 b c}{d}\right ) \operatorname{Subst}\left (\int \sin \left (\frac{3 b x^2}{d}\right ) \, dx,x,\sqrt{c+d x}\right )}{12 b}-\frac{\cos \left (a-\frac{b c}{d}\right ) \operatorname{Subst}\left (\int \sin \left (\frac{b x^2}{d}\right ) \, dx,x,\sqrt{c+d x}\right )}{4 b}+\frac{\sin \left (3 a-\frac{3 b c}{d}\right ) \operatorname{Subst}\left (\int \cos \left (\frac{3 b x^2}{d}\right ) \, dx,x,\sqrt{c+d x}\right )}{12 b}-\frac{\sin \left (a-\frac{b c}{d}\right ) \operatorname{Subst}\left (\int \cos \left (\frac{b x^2}{d}\right ) \, dx,x,\sqrt{c+d x}\right )}{4 b}\\ &=-\frac{\sqrt{d} \sqrt{\frac{\pi }{2}} \cos \left (a-\frac{b c}{d}\right ) S\left (\frac{\sqrt{b} \sqrt{\frac{2}{\pi }} \sqrt{c+d x}}{\sqrt{d}}\right )}{4 b^{3/2}}+\frac{\sqrt{d} \sqrt{\frac{\pi }{6}} \cos \left (3 a-\frac{3 b c}{d}\right ) S\left (\frac{\sqrt{b} \sqrt{\frac{6}{\pi }} \sqrt{c+d x}}{\sqrt{d}}\right )}{12 b^{3/2}}+\frac{\sqrt{d} \sqrt{\frac{\pi }{6}} C\left (\frac{\sqrt{b} \sqrt{\frac{6}{\pi }} \sqrt{c+d x}}{\sqrt{d}}\right ) \sin \left (3 a-\frac{3 b c}{d}\right )}{12 b^{3/2}}-\frac{\sqrt{d} \sqrt{\frac{\pi }{2}} C\left (\frac{\sqrt{b} \sqrt{\frac{2}{\pi }} \sqrt{c+d x}}{\sqrt{d}}\right ) \sin \left (a-\frac{b c}{d}\right )}{4 b^{3/2}}+\frac{\sqrt{c+d x} \sin (a+b x)}{4 b}-\frac{\sqrt{c+d x} \sin (3 a+3 b x)}{12 b}\\ \end{align*}

Mathematica [C]  time = 6.56647, size = 280, normalized size = 0.92 \[ -\frac{-\sqrt{2 \pi } \sin \left (3 a-\frac{3 b c}{d}\right ) \text{FresnelC}\left (\sqrt{\frac{6}{\pi }} \sqrt{\frac{b}{d}} \sqrt{c+d x}\right )-\sqrt{2 \pi } \cos \left (3 a-\frac{3 b c}{d}\right ) S\left (\sqrt{\frac{b}{d}} \sqrt{\frac{6}{\pi }} \sqrt{c+d x}\right )+2 \sqrt{3} \sqrt{\frac{b}{d}} \sqrt{c+d x} \sin (3 (a+b x))}{24 \sqrt{3} b \sqrt{\frac{b}{d}}}-\frac{i \sqrt{c+d x} e^{-\frac{i (a d+b c)}{d}} \left (\frac{e^{2 i a} \text{Gamma}\left (\frac{3}{2},-\frac{i b (c+d x)}{d}\right )}{\sqrt{-\frac{i b (c+d x)}{d}}}-\frac{e^{\frac{2 i b c}{d}} \text{Gamma}\left (\frac{3}{2},\frac{i b (c+d x)}{d}\right )}{\sqrt{\frac{i b (c+d x)}{d}}}\right )}{8 b} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[c + d*x]*Cos[a + b*x]*Sin[a + b*x]^2,x]

[Out]

((-I/8)*Sqrt[c + d*x]*((E^((2*I)*a)*Gamma[3/2, ((-I)*b*(c + d*x))/d])/Sqrt[((-I)*b*(c + d*x))/d] - (E^(((2*I)*
b*c)/d)*Gamma[3/2, (I*b*(c + d*x))/d])/Sqrt[(I*b*(c + d*x))/d]))/(b*E^((I*(b*c + a*d))/d)) - (-(Sqrt[2*Pi]*Cos
[3*a - (3*b*c)/d]*FresnelS[Sqrt[b/d]*Sqrt[6/Pi]*Sqrt[c + d*x]]) - Sqrt[2*Pi]*FresnelC[Sqrt[b/d]*Sqrt[6/Pi]*Sqr
t[c + d*x]]*Sin[3*a - (3*b*c)/d] + 2*Sqrt[3]*Sqrt[b/d]*Sqrt[c + d*x]*Sin[3*(a + b*x)])/(24*Sqrt[3]*b*Sqrt[b/d]
)

________________________________________________________________________________________

Maple [A]  time = 0.036, size = 294, normalized size = 1. \begin{align*} 2\,{\frac{1}{d} \left ( 1/8\,{\frac{d\sqrt{dx+c}}{b}\sin \left ({\frac{ \left ( dx+c \right ) b}{d}}+{\frac{ad-bc}{d}} \right ) }-1/16\,{\frac{d\sqrt{2}\sqrt{\pi }}{b} \left ( \cos \left ({\frac{ad-bc}{d}} \right ){\it FresnelS} \left ({\frac{\sqrt{2}\sqrt{dx+c}b}{\sqrt{\pi }d}{\frac{1}{\sqrt{{\frac{b}{d}}}}}} \right ) +\sin \left ({\frac{ad-bc}{d}} \right ){\it FresnelC} \left ({\frac{\sqrt{2}\sqrt{dx+c}b}{\sqrt{\pi }d}{\frac{1}{\sqrt{{\frac{b}{d}}}}}} \right ) \right ){\frac{1}{\sqrt{{\frac{b}{d}}}}}}-1/24\,{\frac{d\sqrt{dx+c}}{b}\sin \left ( 3\,{\frac{ \left ( dx+c \right ) b}{d}}+3\,{\frac{ad-bc}{d}} \right ) }+{\frac{d\sqrt{2}\sqrt{\pi }\sqrt{3}}{144\,b} \left ( \cos \left ( 3\,{\frac{ad-bc}{d}} \right ){\it FresnelS} \left ({\frac{\sqrt{2}\sqrt{3}\sqrt{dx+c}b}{\sqrt{\pi }d}{\frac{1}{\sqrt{{\frac{b}{d}}}}}} \right ) +\sin \left ( 3\,{\frac{ad-bc}{d}} \right ){\it FresnelC} \left ({\frac{\sqrt{2}\sqrt{3}\sqrt{dx+c}b}{\sqrt{\pi }d}{\frac{1}{\sqrt{{\frac{b}{d}}}}}} \right ) \right ){\frac{1}{\sqrt{{\frac{b}{d}}}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)^(1/2)*cos(b*x+a)*sin(b*x+a)^2,x)

[Out]

2/d*(1/8/b*d*(d*x+c)^(1/2)*sin(1/d*(d*x+c)*b+(a*d-b*c)/d)-1/16/b*d*2^(1/2)*Pi^(1/2)/(b/d)^(1/2)*(cos((a*d-b*c)
/d)*FresnelS(2^(1/2)/Pi^(1/2)/(b/d)^(1/2)*(d*x+c)^(1/2)*b/d)+sin((a*d-b*c)/d)*FresnelC(2^(1/2)/Pi^(1/2)/(b/d)^
(1/2)*(d*x+c)^(1/2)*b/d))-1/24/b*d*(d*x+c)^(1/2)*sin(3/d*(d*x+c)*b+3*(a*d-b*c)/d)+1/144/b*d*2^(1/2)*Pi^(1/2)*3
^(1/2)/(b/d)^(1/2)*(cos(3*(a*d-b*c)/d)*FresnelS(2^(1/2)/Pi^(1/2)*3^(1/2)/(b/d)^(1/2)*(d*x+c)^(1/2)*b/d)+sin(3*
(a*d-b*c)/d)*FresnelC(2^(1/2)/Pi^(1/2)*3^(1/2)/(b/d)^(1/2)*(d*x+c)^(1/2)*b/d)))

________________________________________________________________________________________

Maxima [C]  time = 2.31223, size = 1648, normalized size = 5.42 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(1/2)*cos(b*x+a)*sin(b*x+a)^2,x, algorithm="maxima")

[Out]

-1/288*sqrt(3)*(8*sqrt(3)*sqrt(d*x + c)*d*abs(b)*sin(3*((d*x + c)*b - b*c + a*d)/d)/abs(d) - 24*sqrt(3)*sqrt(d
*x + c)*d*abs(b)*sin(((d*x + c)*b - b*c + a*d)/d)/abs(d) + ((-I*sqrt(pi)*cos(1/4*pi + 1/2*arctan2(0, b) + 1/2*
arctan2(0, d/sqrt(d^2))) - I*sqrt(pi)*cos(-1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))) - sqrt(pi
)*sin(1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))) + sqrt(pi)*sin(-1/4*pi + 1/2*arctan2(0, b) + 1
/2*arctan2(0, d/sqrt(d^2))))*d*sqrt(abs(b)/abs(d))*cos(-3*(b*c - a*d)/d) - (sqrt(pi)*cos(1/4*pi + 1/2*arctan2(
0, b) + 1/2*arctan2(0, d/sqrt(d^2))) + sqrt(pi)*cos(-1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2)))
 - I*sqrt(pi)*sin(1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))) + I*sqrt(pi)*sin(-1/4*pi + 1/2*arc
tan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))))*d*sqrt(abs(b)/abs(d))*sin(-3*(b*c - a*d)/d))*erf(sqrt(d*x + c)*sqrt
(3*I*b/d)) + (sqrt(3)*(3*I*sqrt(pi)*cos(1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))) + 3*I*sqrt(p
i)*cos(-1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))) + 3*sqrt(pi)*sin(1/4*pi + 1/2*arctan2(0, b)
+ 1/2*arctan2(0, d/sqrt(d^2))) - 3*sqrt(pi)*sin(-1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))))*d*
sqrt(abs(b)/abs(d))*cos(-(b*c - a*d)/d) + sqrt(3)*(3*sqrt(pi)*cos(1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0,
d/sqrt(d^2))) + 3*sqrt(pi)*cos(-1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))) - 3*I*sqrt(pi)*sin(1
/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))) + 3*I*sqrt(pi)*sin(-1/4*pi + 1/2*arctan2(0, b) + 1/2*
arctan2(0, d/sqrt(d^2))))*d*sqrt(abs(b)/abs(d))*sin(-(b*c - a*d)/d))*erf(sqrt(d*x + c)*sqrt(I*b/d)) + (sqrt(3)
*(-3*I*sqrt(pi)*cos(1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))) - 3*I*sqrt(pi)*cos(-1/4*pi + 1/2
*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))) + 3*sqrt(pi)*sin(1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/s
qrt(d^2))) - 3*sqrt(pi)*sin(-1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))))*d*sqrt(abs(b)/abs(d))*
cos(-(b*c - a*d)/d) + sqrt(3)*(3*sqrt(pi)*cos(1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))) + 3*sq
rt(pi)*cos(-1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))) + 3*I*sqrt(pi)*sin(1/4*pi + 1/2*arctan2(
0, b) + 1/2*arctan2(0, d/sqrt(d^2))) - 3*I*sqrt(pi)*sin(-1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^
2))))*d*sqrt(abs(b)/abs(d))*sin(-(b*c - a*d)/d))*erf(sqrt(d*x + c)*sqrt(-I*b/d)) + ((I*sqrt(pi)*cos(1/4*pi + 1
/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))) + I*sqrt(pi)*cos(-1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0,
d/sqrt(d^2))) - sqrt(pi)*sin(1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))) + sqrt(pi)*sin(-1/4*pi
+ 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))))*d*sqrt(abs(b)/abs(d))*cos(-3*(b*c - a*d)/d) - (sqrt(pi)*co
s(1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))) + sqrt(pi)*cos(-1/4*pi + 1/2*arctan2(0, b) + 1/2*a
rctan2(0, d/sqrt(d^2))) + I*sqrt(pi)*sin(1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))) - I*sqrt(pi
)*sin(-1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))))*d*sqrt(abs(b)/abs(d))*sin(-3*(b*c - a*d)/d))
*erf(sqrt(d*x + c)*sqrt(-3*I*b/d)))*abs(d)/(b*d*abs(b))

________________________________________________________________________________________

Fricas [A]  time = 0.583368, size = 639, normalized size = 2.1 \begin{align*} \frac{\sqrt{6} \pi d \sqrt{\frac{b}{\pi d}} \cos \left (-\frac{3 \,{\left (b c - a d\right )}}{d}\right ) \operatorname{S}\left (\sqrt{6} \sqrt{d x + c} \sqrt{\frac{b}{\pi d}}\right ) - 9 \, \sqrt{2} \pi d \sqrt{\frac{b}{\pi d}} \cos \left (-\frac{b c - a d}{d}\right ) \operatorname{S}\left (\sqrt{2} \sqrt{d x + c} \sqrt{\frac{b}{\pi d}}\right ) - 9 \, \sqrt{2} \pi d \sqrt{\frac{b}{\pi d}} \operatorname{C}\left (\sqrt{2} \sqrt{d x + c} \sqrt{\frac{b}{\pi d}}\right ) \sin \left (-\frac{b c - a d}{d}\right ) + \sqrt{6} \pi d \sqrt{\frac{b}{\pi d}} \operatorname{C}\left (\sqrt{6} \sqrt{d x + c} \sqrt{\frac{b}{\pi d}}\right ) \sin \left (-\frac{3 \,{\left (b c - a d\right )}}{d}\right ) - 24 \,{\left (b \cos \left (b x + a\right )^{2} - b\right )} \sqrt{d x + c} \sin \left (b x + a\right )}{72 \, b^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(1/2)*cos(b*x+a)*sin(b*x+a)^2,x, algorithm="fricas")

[Out]

1/72*(sqrt(6)*pi*d*sqrt(b/(pi*d))*cos(-3*(b*c - a*d)/d)*fresnel_sin(sqrt(6)*sqrt(d*x + c)*sqrt(b/(pi*d))) - 9*
sqrt(2)*pi*d*sqrt(b/(pi*d))*cos(-(b*c - a*d)/d)*fresnel_sin(sqrt(2)*sqrt(d*x + c)*sqrt(b/(pi*d))) - 9*sqrt(2)*
pi*d*sqrt(b/(pi*d))*fresnel_cos(sqrt(2)*sqrt(d*x + c)*sqrt(b/(pi*d)))*sin(-(b*c - a*d)/d) + sqrt(6)*pi*d*sqrt(
b/(pi*d))*fresnel_cos(sqrt(6)*sqrt(d*x + c)*sqrt(b/(pi*d)))*sin(-3*(b*c - a*d)/d) - 24*(b*cos(b*x + a)^2 - b)*
sqrt(d*x + c)*sin(b*x + a))/b^2

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{c + d x} \sin ^{2}{\left (a + b x \right )} \cos{\left (a + b x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)**(1/2)*cos(b*x+a)*sin(b*x+a)**2,x)

[Out]

Integral(sqrt(c + d*x)*sin(a + b*x)**2*cos(a + b*x), x)

________________________________________________________________________________________

Giac [C]  time = 1.24356, size = 662, normalized size = 2.18 \begin{align*} -\frac{\frac{i \, \sqrt{6} \sqrt{\pi } d^{2} \operatorname{erf}\left (-\frac{\sqrt{6} \sqrt{b d} \sqrt{d x + c}{\left (\frac{i \, b d}{\sqrt{b^{2} d^{2}}} + 1\right )}}{2 \, d}\right ) e^{\left (\frac{3 i \, b c - 3 i \, a d}{d}\right )}}{\sqrt{b d}{\left (\frac{i \, b d}{\sqrt{b^{2} d^{2}}} + 1\right )} b} - \frac{9 i \, \sqrt{2} \sqrt{\pi } d^{2} \operatorname{erf}\left (-\frac{\sqrt{2} \sqrt{b d} \sqrt{d x + c}{\left (\frac{i \, b d}{\sqrt{b^{2} d^{2}}} + 1\right )}}{2 \, d}\right ) e^{\left (\frac{i \, b c - i \, a d}{d}\right )}}{\sqrt{b d}{\left (\frac{i \, b d}{\sqrt{b^{2} d^{2}}} + 1\right )} b} + \frac{9 i \, \sqrt{2} \sqrt{\pi } d^{2} \operatorname{erf}\left (-\frac{\sqrt{2} \sqrt{b d} \sqrt{d x + c}{\left (-\frac{i \, b d}{\sqrt{b^{2} d^{2}}} + 1\right )}}{2 \, d}\right ) e^{\left (\frac{-i \, b c + i \, a d}{d}\right )}}{\sqrt{b d}{\left (-\frac{i \, b d}{\sqrt{b^{2} d^{2}}} + 1\right )} b} - \frac{i \, \sqrt{6} \sqrt{\pi } d^{2} \operatorname{erf}\left (-\frac{\sqrt{6} \sqrt{b d} \sqrt{d x + c}{\left (-\frac{i \, b d}{\sqrt{b^{2} d^{2}}} + 1\right )}}{2 \, d}\right ) e^{\left (\frac{-3 i \, b c + 3 i \, a d}{d}\right )}}{\sqrt{b d}{\left (-\frac{i \, b d}{\sqrt{b^{2} d^{2}}} + 1\right )} b} - \frac{6 i \, \sqrt{d x + c} d e^{\left (\frac{3 i \,{\left (d x + c\right )} b - 3 i \, b c + 3 i \, a d}{d}\right )}}{b} + \frac{18 i \, \sqrt{d x + c} d e^{\left (\frac{i \,{\left (d x + c\right )} b - i \, b c + i \, a d}{d}\right )}}{b} - \frac{18 i \, \sqrt{d x + c} d e^{\left (\frac{-i \,{\left (d x + c\right )} b + i \, b c - i \, a d}{d}\right )}}{b} + \frac{6 i \, \sqrt{d x + c} d e^{\left (\frac{-3 i \,{\left (d x + c\right )} b + 3 i \, b c - 3 i \, a d}{d}\right )}}{b}}{144 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(1/2)*cos(b*x+a)*sin(b*x+a)^2,x, algorithm="giac")

[Out]

-1/144*(I*sqrt(6)*sqrt(pi)*d^2*erf(-1/2*sqrt(6)*sqrt(b*d)*sqrt(d*x + c)*(I*b*d/sqrt(b^2*d^2) + 1)/d)*e^((3*I*b
*c - 3*I*a*d)/d)/(sqrt(b*d)*(I*b*d/sqrt(b^2*d^2) + 1)*b) - 9*I*sqrt(2)*sqrt(pi)*d^2*erf(-1/2*sqrt(2)*sqrt(b*d)
*sqrt(d*x + c)*(I*b*d/sqrt(b^2*d^2) + 1)/d)*e^((I*b*c - I*a*d)/d)/(sqrt(b*d)*(I*b*d/sqrt(b^2*d^2) + 1)*b) + 9*
I*sqrt(2)*sqrt(pi)*d^2*erf(-1/2*sqrt(2)*sqrt(b*d)*sqrt(d*x + c)*(-I*b*d/sqrt(b^2*d^2) + 1)/d)*e^((-I*b*c + I*a
*d)/d)/(sqrt(b*d)*(-I*b*d/sqrt(b^2*d^2) + 1)*b) - I*sqrt(6)*sqrt(pi)*d^2*erf(-1/2*sqrt(6)*sqrt(b*d)*sqrt(d*x +
 c)*(-I*b*d/sqrt(b^2*d^2) + 1)/d)*e^((-3*I*b*c + 3*I*a*d)/d)/(sqrt(b*d)*(-I*b*d/sqrt(b^2*d^2) + 1)*b) - 6*I*sq
rt(d*x + c)*d*e^((3*I*(d*x + c)*b - 3*I*b*c + 3*I*a*d)/d)/b + 18*I*sqrt(d*x + c)*d*e^((I*(d*x + c)*b - I*b*c +
 I*a*d)/d)/b - 18*I*sqrt(d*x + c)*d*e^((-I*(d*x + c)*b + I*b*c - I*a*d)/d)/b + 6*I*sqrt(d*x + c)*d*e^((-3*I*(d
*x + c)*b + 3*I*b*c - 3*I*a*d)/d)/b)/d